IOPscience

Home Search Collections Journals About Contact us My IOPscience

Elastic properties of $NaXH_4$ (X = B, AI)

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 J. Phys.: Condens. Matter 21 275401 (http://iopscience.iop.org/0953-8984/21/27/275401)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 29/05/2010 at 20:30

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 21 (2009) 275401 (6pp)

Elastic properties of $NaXH_4$ (X = B, Al)

Xiao-Dong Zhang¹, Zhen-Yi Jiang^{1,3}, Yu-Qing Hou² and Li-Sha Li¹

 ¹ Institute of Modern Physics, Northwest University, Xian 710069, People's Republic of China
 ² Department of Electronic Science, Northwest University, Xian 710069, People's Republic of China

E-mail: jiangzy@nwu.edu.cn and jiang_zhenyi@hotmail.com

Received 15 March 2009, in final form 13 May 2009 Published 10 June 2009 Online at stacks.iop.org/JPhysCM/21/275401

Abstract

Elastic properties of NaXH₄ (X = B, Al) have been studied by first-principles calculations using a projected augmented plane-wave approach. The calculated elastic constants compare favorably with experimental values. Our calculations show that the theoretically calculated elastic constants and bulk moduli have small values compared with those of typical metals and intermetallic compounds, which indicates that NaXH₄ (X = B, Al) are highly compressible. Comparison of bulk moduli *B* of different complex hydrides shows a correlation between *B* and the decomposition temperatures. Also, we calculated the elastic anisotropies and the Debye temperatures from the elastic constants.

1. Introduction

The strong demand for new clean energy has intensified the interest in materials for energy storage. Complex hydrides have attracted much attention with their efficient hydrogen storage ability. These hydrides have been shown to hold higher hydrogen storage capability at moderate temperature and lower cost than conventional intermetallic hydrides. Among them, NaBH₄ and NaAlH₄ have received special attention for their high gravimetric hydrogen density. However, a serious problem with these materials is poor kinetics, high decomposition temperatures, and lacking reversibility with respect to hydrogen absorption/desorption.

Since Bogdanovic and Schwickardi [1] reported the reversibility of catalyzed hydrogen sorption reaction of NaAlH₄, many efforts have been devoted to study complex hydrides as hydrogen storage materials. There are mainly two ways for solving these problems. One is adding catalyst to the complex hydrides; the other is mixing two or more kinds of compounds, e.g. LiBH₄ + LiNH₃ or LiBH₄ + CaH₂ for decreasing the enthalpy changes. Unfortunately, the effects are limited in solving all of the three problems mentioned above. Moreover, the experimental efforts to finding an appropriate catalyst in complex hydrides cost too much, while theoretical calculations cost less. What we need is just an index for describing the catalytical effects. So more understanding of the basic material properties is still important for finding more efficient hydrogen storage methods.

Elastic properties of solids are important because they relate to various fundamental solid-state properties such as interatomic potentials, equation of state, and phonon spectra. Moreover, it is noticed that there is a correlation between the elastic constants and the melting temperatures of a solid [2, 3]; and the melting temperatures of MBH_4 (M = Li, Na, K) under hydrogen atmosphere can be regarded as an index of hydrogen decomposition temperatures, a concept applied in MBH₄ (M = Li, Na, K) successfully by Orimo *et al* [4]. Ravindran et al [5] have successfully calculated the Debye temperature of TiSi₂ using elastic constants. So it is valuable to get the knowledge of elastic constants of MXH₄ for determining their thermodynamic properties, e.g. decomposition temperature $(T_{\rm d})$. However, data for complex hydrides are much more limited. In particular, single-crystal elastic constants, which are required in the basic studies mentioned above, are not available except for a few cases [6]. Efforts have been made to calculate the elastic constants theoretically from so-called first-principles calculations and, although the bulk modulus has been calculated for various complex hydrides, calculations of elastic constants are relatively scarce [6].

In this paper, we present first-principles calculations of elastic constants of NaXH₄ (X = B, Al) and compare their melting temperatures (T_m), bulk moduli B, and the distance of X–H (X = Al, B) of different complex hydrides. We find a correlation between B and the melting temperature, from which we can theoretically predict the decomposition temperature (T_d) in different conditions, such as under high pressure, doped by catalyst. Also, we describe the elastic anisotropy and Debye temperatures of NaXH₄ (X = B, Al).

 $^{^{3}}$ Author to whom any correspondence should be addressed.

Table 1. Lattice constants (angstroms) and atom positions (in direct coordinates) of MXH_4 (M = Li, Na. X = B, Al).

Compound	Lattice c	onstants	Atomic coordinates				
α–NaBH ₄	$a = 6.1480^{a}$	a = 6.1183	$Na(0, 0, 0)^a$	Na(0, 0, 0)			
(<i>F</i> 43 <i>m</i>)			$B(0.5, 0.5, 0.5)^{a}$	B(0.5, 0.5, 0.5)			
(Z = 4)			$H(x, x, x)x = 0.3901^{a}$	H(x, x, x)x = 0.3846			
β -NaBH ₄	$a = 4.3464^{b}$	a = 4.3455	$Na(0, 0, 0)^{b}$	Na(0, 0, 0)			
$(P42_1c)$	$c = 5.8620^{b}$	c = 5.8725	$B(0, 0, 0.5)^{b}$	B(0, 0, 0.5)			
(Z = 2)			H(0.0111, 0.7694, 0.3803) ^b	H(0.0100, 0.7691, 0.3805)			
α -NaAlH ₄	$a = 4.9801^{\circ}$	a = 5.0027	$Na(0, 1/4, 1/8)^{c}$	Na(0, 1/4, 1/8)			
$(I4_1/a)$	$c = 11.1483^{\circ}$	c = 11.1033	$Al(0, 1/4, 5/8)^{c}$	Al(0, 1/4, 5/8)			
(Z = 4)			H(0.2372, 0.3869, 0.5456) ^c	H(0.2653, 0.3589, 0.5810)			
β -NaAlH ₄	$a = 3.5493^{d}$	a = 3.5298	Na(0, 0.1708, 0.2373) ^d	Na(0, 0.1730, 0.2347)			
$(Cmc2_1)$	$b = 13.8304^{d}$	b = 14.0151	Al(0, 0.4147, 0.2056) ^d	Al(0, 0.4154, 0.2055)			
(Z = 4)	$c = 5.1133^{d}$	c = 5.1021	H1(0, 0.3485, 0.4807) ^d	H1(0, 0.3486, 0.4772)			
			$H2(0, 0.3147, 0.0117)^{d}$	H2(0, 0.3174, 0.0103)			
			$H3(0, 0.0763, 0.6842)^{d}$	H3(0, 0.0765, 0.6860)			
			H4(0, 0.5232, 0.3816) ^d	H4(0, 0.5209, 0.3874)			

^a Experiment [11]; ^b DFT [20]; ^c Experiment [9]; ^d DFT [10].

2. Computational details

To predict the ground-state crystal structure and elastic properties of MXH₄, the present calculations have been performed using the projected augmented plane-wave pseudopotentials (PAW) based on density functional theory implemented in the Vienna ab initio simulation package (VASP) [7, 8]. All calculations were carried out within the framework of the generalized gradient approximation (GGA) with Perdew-Wang 91 correlation functions. The cutoff energies are all 550 eV for NaAlH₄, NaBH4; and the Monkhorst-Pack grid for Brillouin zone integration was chosen to achieve converged k meshes (5 \times 5 \times 2 for α -NaAlH₄, 6 × 2 × 4 for β -NaAlH₄, 7 × 7 × 7 for α -NaBH₄, $9 \times 9 \times 7$ for β -NaBH₄). The geometry optimizations have been done (ion coordinates and c/a ratio) by minimizing the Hellmann–Feynman forces on the atoms and total energy for the unit cell. In addition to the α -phase of NaXH₄ (X = B, Al), we also calculated the elastic constants of the β -phase of $NaXH_4$ (X = B, Al) for comparison.

3. Results and discussion

The calculated lattice constants and atom positions of NaXH₄ (X = B, Al) are listed in table 1. Our theoretical values of NaAlH₄ and NaBH₄ are in good agreement with the experimental results and previous theory predictions for both lattice constants and atom positions [9–13], which indicates that our calculations are reliable. The optimized structures of NaAlH₄ and NaBH₄ are shown in figure 1. Our results indicate that [BH₄]⁻ and [AlH₄]⁻ anions in α -NaXH₄ are tetrahedral. While Al atoms in β -NaAlH₄ have six nearest hydrogen atoms with Al–H distances of 1.54–1.81 Å. B–H and Al–H have strong covalent interactions and Na–BH₄ and Na–AlH₄ have ionic interactions [15].

For elastic constant calculations, the methods we used are described in [5]. The changes in total energy versus strain δ for NaXH₄ (X = B, Al) were fitted with a quadratic function.

Figure 1. Upper row: crystal structure of (a) α -NaBH₄, (b) β -NaBH₄. Lower row: (c) α -NaAlH₄, (d) β -NaAlH₄.

3.1. Elastic constants

All of the calculated elastic constants of NaXH₄ (X = B, Al) are listed in table 2. The elastic constants of NaBH₄ are found to compare favorably with the experimental values in [6], which indicates again that our calculation method is reliable. The experimental values of elastic constants of both α -NaAlH₄ and β -NaAlH₄ are not available but our bulk moduli compare favorably with previous theoretical calculations [14].

The elastic constants C_{11} , C_{22} , and C_{33} are important among all elastic constants, because they relate to the deformation behavior and atomic bonding characteristics of complex hydrides. For α -NaAlH₄, $C_{11} > C_{33}$ indicates that the atomic bonding along the (100) planes between nearest

Table 2. Elastic constants (GPa) of MXH₄ (M = Li, Na, X = B, Al). B_V and B_R denote Voigt bulk modulus and Reuss bulk modulus, respectively. G_V and G_R denote Voigt shear modulus and Reuss shear modulus, respectively. T_d (K) represents the decomposition temperature, T_m (K) represents the melting temperature. d_{X-H} represents the mean of distance between X and H in angstrom.

	NaBH ₄ [6]	NaBH ₄ ($F43m$)	NaBH ₄ ($P42_1c$)	NaAlH ₄ $(I4_1/a)$	NaAlH ₄ (<i>Cmc</i> 2 ₁)
$T_{\rm d}$		838 ^a		483 ^b	
T _m		770 ^a		451 ^b	
$d_{\text{Na}-X}$	3.07	3.06		3.53	
$d_{\rm X-H}$	1.17	1.17	1.22	1.63	1.68
C_{11}	26.5	30.2	38.0	39.7	94.5
C_{12}	9.5	13.4	6.2	10.6	14.5
C_{13}		13.4	13.6	5.0	29.1
C_{22}		30.2	38.0	39.7	44.1
C_{23}		13.4	13.6	5.0	15.9
C_{33}		30.2	40.8	29.7	66.6
C_{44}	9.4	12.4	9.5	11.5	80.6
C ₅₅		12.4	9.5	11.5	36.2
C_{66}		12.4	6.7	13.5	20.4
$B_{\rm V}$	15.2°	19.0	20.4	16.7	36.0
$B_{\rm R}$	15.2 ^c	18.6	15.2	16.1	31.6
В	15.8	18.8	17.8	16.4	33.8
В		7.6 ^d	7.8 ^d	19.3 ^e	36.5 ^e
$G_{\rm V}$	9.0193°	10.8	10.7	13.2	22.7
G_{R}	9.0353°	10.4	9.0	13.0	17.5
G	9.0273 ^c	10.6	9.9	13.1	20.1

^a Experimental values [26]; ^b experimental values [27]; ^c calculated from [6]; ^d DFT results [20]. ^e DFT results [10].

neighbors are stronger than those along the (001) planes. For β -NaAlH₄, atomic bonding along the (100) plane is the strongest, next is atomic bonding along the (001) plane and (010) plane. These bonding characters are useful when considering their phase transitions under pressure or at high temperature.

As shown in table 2, the mean distances of X–H in the β -phase are shorter than those in the α -phase, indicating that the interatomic bonding in the β -phase is stronger than that in the α -phase. We find that the elastic constants of the β -phase are larger than those of the α -phase except in a few cases (C_{11} , C_{22} , and C_{33} in NaAlH₄), which can be understood by the fact that the interatomic bonding in the β -phase is stronger than that in the α -phase. As for the cases of C_{11} , C_{22} , and C_{33} in NaAlH₄, they can be explained by the fact that bonds along (001), (010), and (100) directions in the β -phase are stronger than those in the α -phase.

Below, when we compare the properties of NaAlH₄ and NaBH₄, we denote NaAlH₄ and NaBH₄ with 1 and 2 respectively for simplification. From table 2, we find that the order of the distance of X–H (X = Al, B) is $d_1 > d_2$, which qualitatively indicates that covalent bonding in B-H is stronger than that in Al-H. One point to note is that doping the Ti cation into NaAlH₄ reduces the decomposition temperature of NaAlH₄. This phenomenon can be explained with the distortion of tetrahedral AlH₄. That is, the weakened Al-H bond will help reduce the decomposition temperature. Also, we find that the decomposition temperature varies inversely with d (X–H distance). We should note that the bulk modulus of NaBH₄ is larger than that of NaAlH₄ while d_{B-H} is shorter than d_{Al-H} , which can be understood by the fact that covalent bonding in BH4 and AlH4 is dominant in NaXH4 (X = B, Al) while bulk moduli reflect crystal bonding. The relationship between *B* and the distance X–H (denoted by *d*) suggested further studies on the relationship between *B* and the decomposition temperature. Melting temperatures of MBH₄ can be regarded as an index of hydrogen decomposition temperatures [4]. So, we can use melting temperature T_m rather than decomposition temperature T_d when discussing the relationship between *B* and the decomposition temperatures.

Fine et al [2] found a correlation between elastic constants and melting temperatures in metals and intermetallic compounds, e.g. $T_{\rm m} = 607 + 9.3B$. Our results show a similar correlation. At least the tendency of melting temperature $NaAlH_4$ ($T_m = 451 \text{ K}$) < $NaBH_4$ ($T_m = 770 \text{ K}$) is the same as that of NaAlH₄ (B = 16.4 GPa) < NaBH₄(B = 18.8 GPa). This interesting relation $T_{\rm m} = 132.9B - 1729$ (shown in figure 2) may be useful for predicting the decomposition temperature (T_d) of doped MXH₄ qualitatively. The larger coefficient of this relationship is mainly from the fact that the differences of the elastic moduli are small in MXH4 (e.g. $\Delta T_{\rm m} = 319$ K, $\Delta B = 2.4$ GPa between NaAlH₄ and NaBH₄ while $\Delta T_{\rm m} = 301$ K, $\Delta B = 28$ GPa between Ag and Al). Another factor influencing the coefficient of the relationship is the limited data of bulk moduli of MXH₄. The exact relationship between $T_{\rm m}$ and elastic constants requires further computations and analysis.

3.2. Bulk modulus, shear modulus, and Poisson's ratio

The difficulty in preparing the single-crystal samples leads to the impossibility of measuring the single-crystal elastic constants C_{ij} , while the bulk modulus B and shear modulus G can be determined more easily, so we give the results of B and G according to our calculated single-crystal elastic constants.

We calculated the shear modulus and bulk modulus using the Hill model, which takes the arithmetic average of the

Table 3. The calculated bulk modulus B (GPa), shear modulus G (GPa) and Poisson's ratio v of MXH₄. B_V and B_R denote the Voigt bulk modulus and Reuss bulk modulus, respectively. G_V and G_R denote the Voigt shear modulus and Reuss shear modulus, respectively. A is the Zener anisotropy index; A^U is the universal anisotropy index proposed by Ranganathan *et al* [24]. (Note: calculated from the experiment values of [6].)

Compound	В	G	B/G	Ε	ν	$G_{\rm V}/G_{\rm R}$	$B_{\rm V}/B_{\rm R}$	A^{U}	Α
lpha-NaAlH ₄	16.4	13.1	1.252	3.448	0.465	1.015	1.037	0.114	1.468
eta-NaAlH ₄	33.8	20.1	1.682	5.592	0.472	1.297	1.139	1.625	
lpha-NaBH ₄	18.8	10.6	1.774	2.974	0.474	1.038	1.022	0.212	
eta-NaBH ₄	17.8	9.9	1.798	2.784	0.474	1.189	1.342	1.286	

Figure 2. Relation between melting temperatures and bulk moduli.

Voigt [16] and Reuss models [17]. The Voigt shear modulus, Voigt bulk modulus, Reuss shear modulus, and Reuss bulk modulus are

$$G_{\rm V} = \frac{1}{15}(C_{11} + C_{22} + C_{33} - C_{12} - C_{13} - C_{23}) + \frac{1}{5}(C_{44} + C_{55} + C_{66})$$
(1)

$$B_{\rm V} = \frac{1}{9}(C_{11} + 2C_{12} + 2C_{13} + C_{22} + 2C_{23} + C_{33}).$$
(2)

$$R = 15\{4(S_{11} + S_{22} + S_{33}) - 4(S_{12} + S_{13} + S_{23}) + 3(S_{44} + S_{55} + S_{66})\}^{-1}$$
(3)

$$B_{\rm R} = \frac{1}{(S_{11} + S_{22} + S_{33}) - 2(S_{12} + S_{13} + S_{23})} \tag{4}$$

and the Hill bulk modulus and shear modulus are

1

G

$$B = \frac{1}{2}(B_{\rm R} + B_{\rm V}), \qquad G = \frac{1}{2}(G_{\rm R} + G_{\rm V}).$$
 (5)

The Young's modulus E and Poisson's ratio ν [5] are given by

$$E = \frac{9BG}{3B+G} \text{ and } \\ \nu = \frac{3B-2G}{2(3B+G)} = \frac{1}{2} \left(1 - \frac{E}{3B} \right).$$
 (6)

The calculated bulk modulus, *B*, shear modulus, *G*, Young's modulus, *E*, and Poisson's ratio for NaXH₄ are given in table 3, from which we find that the calculated bulk moduli are much smaller than for typical metals [18] and intermetallic compounds [19], which indicates that all NaXH₄ (X = B, Al) are highly compressible materials as also shown in [20]. The bulk modulus of NaBH₄ is larger than that of NaAlH₄, indicating that the bonding in NaBH₄ is stronger than that in NaAlH₄. The larger value of shear modulus is an indication of the more pronounced directional bonding between atoms. The larger value of shear modulus of α -NaAlH₄ compared to that of α -NaBH₄ indicates that the bonding behavior of α -NaAlH₄ is more directional than that of α -NaBH₄. In fact the discussions about elastic anisotropy in section 3.3 prove this conclusion again. Pugh [21] introduced the quotient of bulk to shear modulus of polycrystalline phases (*B*/*G*) as a measure of ductility by considering that the shear modulus *G* represents the resistance to plastic deformation while the bulk modulus represents the resistance to fracture. Higher (*B*/*G*) value is associated with higher ductility and the critical value which separates ductile and brittle materials is 1.75. It is interesting that NaBH₄ is ductile while NaAlH₄ is brittle. Moreover, the ratios *B*/*G* increase by 1% for NaAlH₄ and by 26% for NaBH₄ when α -NaXH₄ transforms into β -phase.

Poisson's ratio is associated with the volume change during uniaxial deformation. The low v value for MXH₄ means a large volume change occurs during elastic deformation and v = 0.5 means no volume change occurs. The v(0.465) in NaAlH₄ is smaller than that (0.473) in NaBH₄, indicating that NaAlH₄ has more volume change during uniaxial deformation. In addition, more information can be found about the characteristics of the bonding forces from Poisson's ratio than any other elastic constants [22]. It has been proved that v = 0.25 is the lower limit for central-force solids and 0.5 is the upper limit, which corresponds to infinite elastic anisotropy [23]. Our calculations suggest that both NaAlH₄ and NaBH₄ are central-force solids.

3.3. Elastic anisotropy

Crystal anisotropy reflects the different atomic arrangement in different directions, which results in different bonding character and affects the physical and chemical properties in different directions of materials. Here, we describe the elastic anisotropy using the anisotropy index proposed by Ranganathan and Ostoja-Starzewshi [24]. The universal anisotropy index is

$$A^{\rm U} = 5\frac{G_{\rm V}}{G_{\rm R}} + \frac{B_{\rm V}}{B_{\rm R}} - 6.$$
 (7)

 $G_{\rm V}$, $G_{\rm R}$, $B_{\rm V}$ and $B_{\rm R}$ denote Voigt shear modulus, Reuss shear modulus, Voigt bulk modulus, and Reuss bulk modulus respectively. For isotropic single crystals $A^{\rm U}$ is zero, while the departure of $A^{\rm U}$ from zero defines the extent of singlecrystal anisotropy and accounts for both the shear and bulk

Table 4. Molecular mass (*M*) with the density (ρ in g cm⁻³), longitudinal, transverse, average elastic wavevelocity (ν_1 , ν_t , ν_m in m s⁻¹), and the Debye temperatures T_D (K) calculated from our results.

Compound	М	ρ	В	G	ν_{l}	ν_{t}	$\nu_{\rm m}$	$T_{\rm D}^{\rm a}$	$T_{\rm D}^{\rm b}$
$\begin{array}{l} \alpha \text{-NaAlH}_4(Z=4) \\ \beta \text{-NaAlH}_4(Z=4) \\ \alpha \text{-NaBH}_4(Z=4) \\ \beta \text{-NaBH}_4(Z=2) \end{array}$	54.00 54.00 37.83 37.83	1.170 1.288 1.013 1.101	16.4 33.8 18.8 17.8	13.1 20.1 10.6 9.9	7090 7176 5200 5306	3346 4201 2987 2999	4528 4658 3318 3336	577 613 454 591	528

^a Calculated from B, G; ^b calculated from C_{ij} .

contributions [24]. For comparison, we give another anisotropy index A proposed by Zener [25] for α -NaBH₄

$$A = \frac{2C_{44}}{C_{11} - C_{12}}.$$
(8)

The calculated elastic anisotropies index A and A^{U} are listed in table 3. For NaXH₄, the β -phase is more anisotropic than the α -phase, which can be understood by the fact that the bonding of the β -phase differs significantly in different directions (e.g. the length difference between the *c* axis and *a* axis is almost 35% in β -NaBH₄). α -NaBH₄ is more anisotropic than α -NaAlH₄ and the difference is mainly the contribution of shear bulk modulus.

3.4. Calculation of Debye temperature

Thermal conductivity measurement is useful for predicting phase transitions [30]. The thermal conductivity coefficient is proportional to specific heat, which can be calculated from Debye temperature in the Debye model. Debye temperature is associated with many physical properties of solids, such as specific heat, elastic constants, and the melting temperature [5]. At low temperatures the vibrational excitations arise solely from acoustic vibrations. Hence, we can calculate the Debye temperature from elastic constants rather than measure it from specific heat at low temperature. Debye temperature (T_D) may be determined from average sound velocity, ν_m , by

$$T_{\rm D} = \frac{h}{k} \left[\frac{3n}{4\pi} \left(\frac{N_{\rm A} \rho}{M} \right) \right]^{1/3} \nu_{\rm m}, \tag{9}$$

where *h* is Planck's constant, *k* is Boltzmann's constant, N_A is Avogadro's number, ρ is the density of the molecule, *M* is the molecular weight, and *n* is the number of atoms in the molecule. The average velocity v_m in the polycrystalline materials is approximately given by

$$\nu_{\rm m} = \left[\frac{1}{3} \left(\frac{2}{\nu_{\rm t}^3} + \frac{1}{\nu_{\rm l}^3}\right)\right]^{-1/3},\tag{10}$$

where v_1 and v_t are longitudinal and transverse elastic velocity and may be obtained from Navier's equation

$$\nu_{\rm l} = \left(\frac{B + \frac{4G}{3}}{\rho}\right)^{1/2} \tag{11}$$

and

$$\nu_{\rm t} = \left(\frac{G}{\rho}\right)^{1/2}.\tag{12}$$

The calculated ρ , v_l , v_t , v_m , and T_D are listed in table 4. We find that the Debye temperature of the β -phase is higher than those of the α -phase, which is consistent with the conclusion of [28], in which Talyzin *et al* conclude there is a large increase of Debye temperature according to the large increase of thermal conductivity when phase transition occurs.

The Debye temperature T_D can be calculated directly from elastic constants by [29]

$$\frac{3}{\theta_{\rm D}} = \frac{1}{\theta_1} + \frac{2}{\theta_{\rm t}}$$

where

$$\theta_{\rm l} = \frac{h\nu_{\rm l}}{k_{\rm B}} \qquad \text{and} \qquad \theta_{\rm t} = \frac{h\nu_{\rm t}}{k_{\rm B}}$$

where *h* is Planck's constant, $k_{\rm B}$ is Boltzmann's constant. $v_{\rm l}$ and $v_{\rm t}$ are longitudinal and transverse frequencies of the elastic wave and can be obtained by

$$v_{\rm l} = U_{\rm l} \left(\frac{3N}{4\pi V}\right)^{1/3}, \qquad v_{\rm t} = U_{\rm t} \left(\frac{3N}{4\pi V}\right)^{1/3}$$

where U_1 , U_t are longitudinal and transversal velocities and can be obtained by solving the Christoffel equation. For α -NaBH₄, U_1 and U_t are

$$U_1 = \left(\frac{C_{11}}{\rho}\right)^{1/2}, \qquad U_t = \left(\frac{C_{44}}{\rho}\right)^{1/2}$$

We calculated the Debye temperature of α -NaBH₄ using this method and compared it with that calculated from *B*, *G*. From table 4, we find that the Debye temperature calculated directly from C_{ij} is higher than that calculated from *B*, *G*. The difference is mainly from the fact that C_{ij} -*B*, *G* conversion already represents some kind of averaging, which is not equivalent to Debye-model averaging.

4. Conclusions

We have performed first-principles calculations of elastic constants of NaXH₄ (X = B, Al) and find values of *B* may be used to predict qualitatively the decomposition temperatures of NaXH₄. The increase of *B* leads to an increase of decomposition temperature. This may be explained by the shortened distance of X–H, leading to weaker covalent-bond strength of X–H. Our results are useful for predicting decomposition temperature under different conditions e.g. doped by catalyst. We find that all the bulk moduli are small, which indicates that MXH₄ are high-compressibility materials. Other elastic constants are

also small compared with values of typical metals. Elastic constants of the β -phase are larger than those of the α -phase, which can be explained by the fact that bonding in the β -phase is stronger. We also discuss elastic anisotropy of different complex hydrides. We find that our DFT results for NaBH₄ predict larger anisotropy than experiment. The Debye temperatures have been calculated from average elastic wave velocities obtained from shear and bulk moduli and directly from elastic constants C_{ij} .

Acknowledgment

The authors acknowledge the support of the National Science Foundation of China under grant No. 10647008.

References

- Bogadanovic B and Schwickardi M 1997 J. Alloys Compounds 153 1–9
- [2] Fine M E, Brown L D and Marcus H L 1984 Scr. Metall. 18 951
- [3] Nakamura M 1993 Metall. Trans. A 25A 331
- [4] Orimo S, Nakamori Y and Zuttel A 2004 Mater. Sci. Eng. B 108 51–3
- [5] Ravindran P, Fast L, Korzhavyi P A and Johansson B 1998 J. Appl. Phys. 84 4891
- [6] Chernyshov D, Bosak A, Dmitriev V, Filinchuk Y and Hagemann H 2008 Phys. Rev. B 78 172104
- [7] Kresse G and Hafner J 1993 Phys. Rev. B 47 R6726
- [8] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
- [9] Hauback B C, Brinks H W, Jensen C M and Maeland A J 2003 J. Alloys Compounds 358 142
- [10] Vajeeston P, Ravindran P, Vidya R, Fjellvag H and Kjekshus A 2003 Appl. Phys. Lett. 82 2257

- A D Zhung Cr
- [11] Fischer P and Zuettel A 2004 Mater. Sci. Forum 443/444 287
- [12] Frankcombe T J and Lovvik O M 2006 J. Phys. Chem. B 110 622–30
- [13] Lee G, Lee J-Y and Kim J S 2006 Solid State Commun. 139 516–21
- [14] Vajeeston P, Ravindran P, Vidya R, Fjellvag H and Kjekshus A 2003 Appl. Phys. Lett. 82 2257
- [15] Yoshino M, Komiya K, Takahashi Y, Shinzato Y, Yukawa H and Morinaga M 2005 J. Alloys Compounds 404–406 185–90
- [16] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Teubner)
- [17] Reuss A 1929 Z. Angew. Math. Mech. 9 55
- [18] Wills J M, Eriksson O, Soderlind P and Boring A M 1992 Phys. Rev. Lett. 68 2802
- [19] Nakamura M 1994 Intermetallic Compound: Principles vol 1, ed J H Westbrook and R L Fleischer (New York: Wiley) p 873
- [20] Vajeeston P, Ravindran P, Kjekshu A and Fjellvag H 2005 J. Alloys Compounds 387 97–104
- [21] Pugh S F 1954 Phil. Mag. 45 823
- [22] Koster W and Franz H 1961 Metall. Rev. 6 1
- [23] Ledbetter M H 1983 Materials at Low Temperatures ed R P Reed and A F Clark (Metals Park, OH: American Society for Metals) p 1
- [24] Ranganathan S I and Ostoja-Starzewshi M 2008 Phys. Rev. Lett. 101 055504
- [25] Zener C 1948 Elasticity and Anelasticity of Metals (Chicago, IL: University of Chicago Press)
- [26] Nakahara M (ed) 1997 Dictionary of Inorganic Compounds and Complexes 1st edn (Tokyo: Kodansha-Scientific) (in Japanese)
- [27] Bogdanovic B, Brand R A, Marjanovic A, Schwickardi M and Tolle J 2000 J. Alloys Compounds 302 36–58
- [28] Talyzin A V, Andersson O, Sundqvist B, Kurnosov A and Dubrovinsky L 2007 J. Solid State Chem. 180 510–7
- [29] Sekkal W, Aourag H and Certier M 1998 Comput. Mater. Sci. 9 295–302
- [30] Sundqvist B and Andersson O 2006 Phys. Rev. B 73 092102