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Abstract
Elastic properties of NaXH4 (X = B, Al) have been studied by first-principles calculations
using a projected augmented plane-wave approach. The calculated elastic constants compare
favorably with experimental values. Our calculations show that the theoretically calculated
elastic constants and bulk moduli have small values compared with those of typical metals and
intermetallic compounds, which indicates that NaXH4 (X = B, Al) are highly compressible.
Comparison of bulk moduli B of different complex hydrides shows a correlation between B and
the decomposition temperatures. Also, we calculated the elastic anisotropies and the Debye
temperatures from the elastic constants.

1. Introduction

The strong demand for new clean energy has intensified the
interest in materials for energy storage. Complex hydrides
have attracted much attention with their efficient hydrogen
storage ability. These hydrides have been shown to hold higher
hydrogen storage capability at moderate temperature and
lower cost than conventional intermetallic hydrides. Among
them, NaBH4 and NaAlH4 have received special attention
for their high gravimetric hydrogen density. However, a
serious problem with these materials is poor kinetics, high
decomposition temperatures, and lacking reversibility with
respect to hydrogen absorption/desorption.

Since Bogdanovic and Schwickardi [1] reported the
reversibility of catalyzed hydrogen sorption reaction of
NaAlH4, many efforts have been devoted to study complex
hydrides as hydrogen storage materials. There are mainly two
ways for solving these problems. One is adding catalyst to
the complex hydrides; the other is mixing two or more kinds
of compounds, e.g. LiBH4 + LiNH3 or LiBH4 + CaH2 for
decreasing the enthalpy changes. Unfortunately, the effects are
limited in solving all of the three problems mentioned above.
Moreover, the experimental efforts to finding an appropriate
catalyst in complex hydrides cost too much, while theoretical
calculations cost less. What we need is just an index for
describing the catalytical effects. So more understanding of
the basic material properties is still important for finding more
efficient hydrogen storage methods.

3 Author to whom any correspondence should be addressed.

Elastic properties of solids are important because they
relate to various fundamental solid-state properties such as
interatomic potentials, equation of state, and phonon spectra.
Moreover, it is noticed that there is a correlation between the
elastic constants and the melting temperatures of a solid [2, 3];
and the melting temperatures of MBH4 (M = Li, Na, K) under
hydrogen atmosphere can be regarded as an index of hydrogen
decomposition temperatures, a concept applied in MBH4

(M = Li, Na, K) successfully by Orimo et al [4]. Ravindran
et al [5] have successfully calculated the Debye temperature
of TiSi2 using elastic constants. So it is valuable to get the
knowledge of elastic constants of MXH4 for determining their
thermodynamic properties, e.g. decomposition temperature
(Td). However, data for complex hydrides are much more
limited. In particular, single-crystal elastic constants, which
are required in the basic studies mentioned above, are not
available except for a few cases [6]. Efforts have been made
to calculate the elastic constants theoretically from so-called
first-principles calculations and, although the bulk modulus has
been calculated for various complex hydrides, calculations of
elastic constants are relatively scarce [6].

In this paper, we present first-principles calculations of
elastic constants of NaXH4 (X = B, Al) and compare their
melting temperatures (Tm), bulk moduli B , and the distance
of X–H (X = Al, B) of different complex hydrides. We
find a correlation between B and the melting temperature,
from which we can theoretically predict the decomposition
temperature (Td) in different conditions, such as under high
pressure, doped by catalyst. Also, we describe the elastic
anisotropy and Debye temperatures of NaXH4 (X = B, Al).
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Table 1. Lattice constants (angstroms) and atom positions (in direct coordinates) of MXH4 (M = Li, Na. X = B, Al).

Compound Lattice constants Atomic coordinates

α–NaBH4 a = 6.1480a a = 6.1183 Na(0, 0, 0)a Na(0, 0, 0)
(F43m) B(0.5, 0.5, 0.5)a B(0.5, 0.5, 0.5)
(Z = 4) H(x, x, x)x = 0.3901a H(x, x, x)x = 0.3846
β-NaBH4 a = 4.3464b a = 4.3455 Na(0, 0, 0)b Na(0, 0, 0)
(P421c) c = 5.8620b c = 5.8725 B(0, 0, 0.5)b B(0, 0, 0.5)
(Z = 2) H(0.0111, 0.7694, 0.3803)b H(0.0100, 0.7691, 0.3805)
α-NaAlH4 a = 4.9801c a = 5.0027 Na(0, 1/4, 1/8)c Na(0, 1/4, 1/8)
(I41/a) c = 11.1483c c = 11.1033 Al(0, 1/4, 5/8)c Al(0, 1/4, 5/8)
(Z = 4) H(0.2372, 0.3869, 0.5456)c H(0.2653, 0.3589, 0.5810)
β-NaAlH4 a = 3.5493d a = 3.5298 Na(0, 0.1708, 0.2373)d Na(0, 0.1730, 0.2347)
(Cmc21) b = 13.8304d b = 14.0151 Al(0, 0.4147,0.2056)d Al(0, 0.4154, 0.2055)
(Z = 4) c = 5.1133d c = 5.1021 H1(0, 0.3485, 0.4807)d H1(0, 0.3486, 0.4772)

H2(0, 0.3147, 0.0117)d H2(0, 0.3174, 0.0103)
H3(0, 0.0763, 0.6842)d H3(0, 0.0765, 0.6860)
H4(0, 0.5232, 0.3816)d H4(0, 0.5209, 0.3874)

a Experiment [11]; b DFT [20]; c Experiment [9]; d DFT [10].

2. Computational details

To predict the ground-state crystal structure and elastic proper-
ties of MXH4, the present calculations have been performed
using the projected augmented plane-wave pseudopotentials
(PAW) based on density functional theory implemented in the
Vienna ab initio simulation package (VASP) [7, 8]. All calcula-
tions were carried out within the framework of the generalized
gradient approximation (GGA) with Perdew–Wang 91 correla-
tion functions. The cutoff energies are all 550 eV for NaAlH4,
NaBH4; and the Monkhorst–Pack grid for Brillouin zone inte-
gration was chosen to achieve converged k meshes (5 × 5 × 2
for α-NaAlH4, 6 × 2 × 4 for β-NaAlH4, 7 × 7 × 7 for α-
NaBH4, 9 × 9 × 7 for β-NaBH4). The geometry optimizations
have been done (ion coordinates and c/a ratio) by minimizing
the Hellmann–Feynman forces on the atoms and total energy
for the unit cell. In addition to the α-phase of NaXH4 (X = B,
Al), we also calculated the elastic constants of the β-phase of
NaXH4 (X = B, Al) for comparison.

3. Results and discussion

The calculated lattice constants and atom positions of NaXH4

(X = B, Al) are listed in table 1. Our theoretical values
of NaAlH4 and NaBH4 are in good agreement with the
experimental results and previous theory predictions for both
lattice constants and atom positions [9–13], which indicates
that our calculations are reliable. The optimized structures of
NaAlH4 and NaBH4 are shown in figure 1. Our results indicate
that [BH4]− and [AlH4]− anions in α-NaXH4 are tetrahedral.
While Al atoms in β-NaAlH4 have six nearest hydrogen atoms
with Al–H distances of 1.54–1.81 Å. B–H and Al–H have
strong covalent interactions and Na–BH4 and Na–AlH4 have
ionic interactions [15].

For elastic constant calculations, the methods we used are
described in [5]. The changes in total energy versus strain δ for
NaXH4 (X = B, Al) were fitted with a quadratic function.

b

c d

a

Figure 1. Upper row: crystal structure of (a) α-NaBH4,
(b) β-NaBH4. Lower row: (c) α-NaAlH4, (d) β-NaAlH4.

3.1. Elastic constants

All of the calculated elastic constants of NaXH4 (X = B, Al)
are listed in table 2. The elastic constants of NaBH4 are found
to compare favorably with the experimental values in [6],
which indicates again that our calculation method is reliable.
The experimental values of elastic constants of both α-NaAlH4

and β-NaAlH4 are not available but our bulk moduli compare
favorably with previous theoretical calculations [14].

The elastic constants C11, C22, and C33 are important
among all elastic constants, because they relate to the
deformation behavior and atomic bonding characteristics of
complex hydrides. For α-NaAlH4, C11 > C33 indicates that
the atomic bonding along the (100) planes between nearest

2
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Table 2. Elastic constants (GPa) of MXH4 (M = Li, Na, X = B, Al). BV and BR denote Voigt bulk modulus and Reuss bulk modulus,
respectively. GV and GR denote Voigt shear modulus and Reuss shear modulus, respectively. Td (K) represents the decomposition
temperature, Tm (K) represents the melting temperature. dX–H represents the mean of distance between X and H in angstrom.

NaBH4 [6] NaBH4 (F43m) NaBH4 (P421c) NaAlH4 (I41/a) NaAlH4 (Cmc21)

Td 838a 483b

Tm 770a 451b

dNa−X 3.07 3.06 3.53
dX−H 1.17 1.17 1.22 1.63 1.68
C11 26.5 30.2 38.0 39.7 94.5
C12 9.5 13.4 6.2 10.6 14.5
C13 13.4 13.6 5.0 29.1
C22 30.2 38.0 39.7 44.1
C23 13.4 13.6 5.0 15.9
C33 30.2 40.8 29.7 66.6
C44 9.4 12.4 9.5 11.5 80.6
C55 12.4 9.5 11.5 36.2
C66 12.4 6.7 13.5 20.4
BV 15.2c 19.0 20.4 16.7 36.0
BR 15.2c 18.6 15.2 16.1 31.6
B 15.8 18.8 17.8 16.4 33.8
B 7.6d 7.8d 19.3e 36.5e

GV 9.0193c 10.8 10.7 13.2 22.7
GR 9.0353c 10.4 9.0 13.0 17.5
G 9.0273c 10.6 9.9 13.1 20.1

a Experimental values [26]; b experimental values [27]; c calculated from [6]; d DFT results [20].
e DFT results [10].

neighbors are stronger than those along the (001) planes.
For β-NaAlH4, atomic bonding along the (100) plane is
the strongest, next is atomic bonding along the (001) plane
and (010) plane. These bonding characters are useful when
considering their phase transitions under pressure or at high
temperature.

As shown in table 2, the mean distances of X–H in the β-
phase are shorter than those in the α-phase, indicating that the
interatomic bonding in the β-phase is stronger than that in the
α-phase. We find that the elastic constants of the β-phase are
larger than those of the α-phase except in a few cases (C11, C22,
and C33 in NaAlH4), which can be understood by the fact that
the interatomic bonding in the β-phase is stronger than that in
the α-phase. As for the cases of C11, C22, and C33 in NaAlH4,
they can be explained by the fact that bonds along 〈001〉, 〈010〉,
and 〈100〉 directions in the β-phase are stronger than those in
the α-phase.

Below, when we compare the properties of NaAlH4

and NaBH4, we denote NaAlH4 and NaBH4 with 1 and 2
respectively for simplification. From table 2, we find that
the order of the distance of X–H (X = Al, B) is d1 > d2,
which qualitatively indicates that covalent bonding in B–H is
stronger than that in Al–H. One point to note is that doping the
Ti cation into NaAlH4 reduces the decomposition temperature
of NaAlH4. This phenomenon can be explained with the
distortion of tetrahedral AlH4. That is, the weakened Al–H
bond will help reduce the decomposition temperature. Also,
we find that the decomposition temperature varies inversely
with d (X–H distance). We should note that the bulk modulus
of NaBH4 is larger than that of NaAlH4 while dB−H is
shorter than dAl−H, which can be understood by the fact that
covalent bonding in BH4 and AlH4 is dominant in NaXH4

(X = B, Al) while bulk moduli reflect crystal bonding. The

relationship between B and the distance X–H (denoted by
d) suggested further studies on the relationship between B
and the decomposition temperature. Melting temperatures of
MBH4 can be regarded as an index of hydrogen decomposition
temperatures [4]. So, we can use melting temperature Tm

rather than decomposition temperature Td when discussing the
relationship between B and the decomposition temperatures.

Fine et al [2] found a correlation between elastic
constants and melting temperatures in metals and intermetallic
compounds, e.g. Tm = 607 + 9.3B . Our results show a similar
correlation. At least the tendency of melting temperature
NaAlH4 (Tm = 451 K) < NaBH4(Tm = 770 K) is the same as
that of NaAlH4 (B = 16.4 GPa) < NaBH4(B = 18.8 GPa).
This interesting relation Tm = 132.9B–1729 (shown in
figure 2) may be useful for predicting the decomposition
temperature (Td) of doped MXH4 qualitatively. The larger
coefficient of this relationship is mainly from the fact that
the differences of the elastic moduli are small in MXH4

(e.g. �Tm = 319 K, �B = 2.4 GPa between NaAlH4 and
NaBH4 while �Tm = 301 K, �B = 28 GPa between Ag
and Al). Another factor influencing the coefficient of the
relationship is the limited data of bulk moduli of MXH4. The
exact relationship between Tm and elastic constants requires
further computations and analysis.

3.2. Bulk modulus, shear modulus, and Poisson’s ratio

The difficulty in preparing the single-crystal samples leads
to the impossibility of measuring the single-crystal elastic
constants Ci j , while the bulk modulus B and shear modulus G
can be determined more easily, so we give the results of B and
G according to our calculated single-crystal elastic constants.

We calculated the shear modulus and bulk modulus using
the Hill model, which takes the arithmetic average of the

3
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Table 3. The calculated bulk modulus B (GPa), shear modulus G (GPa) and Poisson’s ratio ν of MXH4. BV and BR denote the Voigt bulk
modulus and Reuss bulk modulus, respectively. GV and GR denote the Voigt shear modulus and Reuss shear modulus, respectively. A is the
Zener anisotropy index; AU is the universal anisotropy index proposed by Ranganathan et al [24]. (Note: calculated from the experiment
values of [6].)

Compound B G B/G E ν GV/GR BV/BR AU A

α-NaAlH4 16.4 13.1 1.252 3.448 0.465 1.015 1.037 0.114
β-NaAlH4 33.8 20.1 1.682 5.592 0.472 1.297 1.139 1.625
α-NaBH4 18.8 10.6 1.774 2.974 0.474 1.038 1.022 0.212 1.468
β-NaBH4 17.8 9.9 1.798 2.784 0.474 1.189 1.342 1.286

T
m

 (
K

)

B (GPa)

Tm=132.9B -1729

800

700

600

500

16 17 18 19

Figure 2. Relation between melting temperatures and bulk moduli.

Voigt [16] and Reuss models [17]. The Voigt shear modulus,
Voigt bulk modulus, Reuss shear modulus, and Reuss bulk
modulus are

GV = 1
15 (C11 + C22 + C33 − C12 − C13 − C23)

+ 1
5 (C44 + C55 + C66) (1)

BV = 1
9 (C11 + 2C12 + 2C13 + C22 + 2C23 + C33). (2)

GR = 15{4(S11 + S22 + S33) − 4(S12 + S13 + S23)

+ 3(S44 + S55 + S66)}−1 (3)

BR = 1

(S11 + S22 + S33) − 2(S12 + S13 + S23)
(4)

and the Hill bulk modulus and shear modulus are

B = 1
2 (BR + BV), G = 1

2 (GR + GV). (5)

The Young’s modulus E and Poisson’s ratio ν [5] are given by

E = 9BG

3B + G
and

ν = 3B − 2G

2(3B + G)
= 1

2

(
1 − E

3B

)
. (6)

The calculated bulk modulus, B , shear modulus, G,
Young’s modulus, E , and Poisson’s ratio for NaXH4 are given
in table 3, from which we find that the calculated bulk moduli
are much smaller than for typical metals [18] and intermetallic
compounds [19], which indicates that all NaXH4 (X = B,
Al) are highly compressible materials as also shown in [20].
The bulk modulus of NaBH4 is larger than that of NaAlH4,
indicating that the bonding in NaBH4 is stronger than that in
NaAlH4. The larger value of shear modulus is an indication
of the more pronounced directional bonding between atoms.

The larger value of shear modulus of α-NaAlH4 compared to
that of α-NaBH4 indicates that the bonding behavior of α-
NaAlH4 is more directional than that of α-NaBH4. In fact the
discussions about elastic anisotropy in section 3.3 prove this
conclusion again. Pugh [21] introduced the quotient of bulk to
shear modulus of polycrystalline phases (B/G) as a measure
of ductility by considering that the shear modulus G represents
the resistance to plastic deformation while the bulk modulus
represents the resistance to fracture. Higher (B/G) value is
associated with higher ductility and the critical value which
separates ductile and brittle materials is 1.75. It is interesting
that NaBH4 is ductile while NaAlH4 is brittle. Moreover, the
ratios B/G increase by 1% for NaAlH4 and by 26% for NaBH4

when α-NaXH4 transforms into β-phase.
Poisson’s ratio is associated with the volume change

during uniaxial deformation. The low ν value for MXH4 means
a large volume change occurs during elastic deformation
and ν = 0.5 means no volume change occurs. The
ν(0.465) in NaAlH4 is smaller than that (0.473) in NaBH4,
indicating that NaAlH4 has more volume change during
uniaxial deformation. In addition, more information can be
found about the characteristics of the bonding forces from
Poisson’s ratio than any other elastic constants [22]. It has been
proved that ν = 0.25 is the lower limit for central-force solids
and 0.5 is the upper limit, which corresponds to infinite elastic
anisotropy [23]. Our calculations suggest that both NaAlH4

and NaBH4 are central-force solids.

3.3. Elastic anisotropy

Crystal anisotropy reflects the different atomic arrangement
in different directions, which results in different bonding
character and affects the physical and chemical properties
in different directions of materials. Here, we describe the
elastic anisotropy using the anisotropy index proposed by
Ranganathan and Ostoja-Starzewshi [24]. The universal
anisotropy index is

AU = 5
GV

GR
+ BV

BR
− 6. (7)

GV, GR, BV and BR denote Voigt shear modulus, Reuss
shear modulus, Voigt bulk modulus, and Reuss bulk modulus
respectively. For isotropic single crystals AU is zero, while
the departure of AU from zero defines the extent of single-
crystal anisotropy and accounts for both the shear and bulk

4
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Table 4. Molecular mass (M) with the density (ρ in g cm−3), longitudinal, transverse, average elastic wavevelocity (νl, νt, νm in m s−1), and
the Debye temperatures TD (K) calculated from our results.

Compound M ρ B G νl νt νm T a
D T b

D

α-NaAlH4(Z = 4) 54.00 1.170 16.4 13.1 7090 3346 4528 577
β-NaAlH4(Z = 4) 54.00 1.288 33.8 20.1 7176 4201 4658 613
α-NaBH4(Z = 4) 37.83 1.013 18.8 10.6 5200 2987 3318 454 528
β-NaBH4(Z = 2) 37.83 1.101 17.8 9.9 5306 2999 3336 591

a Calculated from B, G; b calculated from Cij .

contributions [24]. For comparison, we give another anisotropy
index A proposed by Zener [25] for α-NaBH4

A = 2C44

C11 − C12
. (8)

The calculated elastic anisotropies index A and AU are
listed in table 3. For NaXH4, the β-phase is more anisotropic
than the α-phase, which can be understood by the fact that
the bonding of the β-phase differs significantly in different
directions (e.g. the length difference between the c axis and a
axis is almost 35% in β-NaBH4). α-NaBH4 is more anisotropic
than α-NaAlH4 and the difference is mainly the contribution of
shear bulk modulus.

3.4. Calculation of Debye temperature

Thermal conductivity measurement is useful for predicting
phase transitions [30]. The thermal conductivity coefficient
is proportional to specific heat, which can be calculated from
Debye temperature in the Debye model. Debye temperature
is associated with many physical properties of solids, such as
specific heat, elastic constants, and the melting temperature [5].
At low temperatures the vibrational excitations arise solely
from acoustic vibrations. Hence, we can calculate the Debye
temperature from elastic constants rather than measure it from
specific heat at low temperature. Debye temperature (TD) may
be determined from average sound velocity, νm, by

TD = h

k

[
3n

4π

(
NAρ

M

)]1/3

νm, (9)

where h is Planck’s constant, k is Boltzmann’s constant, NA

is Avogadro’s number, ρ is the density of the molecule, M
is the molecular weight, and n is the number of atoms in
the molecule. The average velocity νm in the polycrystalline
materials is approximately given by

νm =
[

1

3

(
2

ν3
t

+ 1

ν3
l

)]−1/3

, (10)

where νl and νt are longitudinal and transverse elastic velocity
and may be obtained from Navier’s equation

νl =
(

B + 4G
3

ρ

)1/2

(11)

and

νt =
(

G

ρ

)1/2

. (12)

The calculated ρ, νl, νt, νm, and TD are listed in table 4. We
find that the Debye temperature of the β-phase is higher than
those of the α-phase, which is consistent with the conclusion
of [28], in which Talyzin et al conclude there is a large
increase of Debye temperature according to the large increase
of thermal conductivity when phase transition occurs.

The Debye temperature TD can be calculated directly from
elastic constants by [29]

3

θD
= 1

θ1
+ 2

θt

where

θl = hνl

kB
and θt = hνt

kB

where h is Planck’s constant, kB is Boltzmann’s constant. νl

and νt are longitudinal and transverse frequencies of the elastic
wave and can be obtained by

νl = Ul

(
3N

4πV

)1/3

, νt = Ut

(
3N

4πV

)1/3

where Ul, Ut are longitudinal and transversal velocities and can
be obtained by solving the Christoffel equation. For α-NaBH4,
Ul and Ut are

Ul =
(

C11

ρ

)1/2

, Ut =
(

C44

ρ

)1/2

.

We calculated the Debye temperature of α-NaBH4 using this
method and compared it with that calculated from B , G. From
table 4, we find that the Debye temperature calculated directly
from Ci j is higher than that calculated from B , G. The
difference is mainly from the fact that Ci j –B , G conversion
already represents some kind of averaging, which is not
equivalent to Debye-model averaging.

4. Conclusions

We have performed first-principles calculations of elastic
constants of NaXH4 (X = B, Al) and find values of B
may be used to predict qualitatively the decomposition
temperatures of NaXH4. The increase of B leads to
an increase of decomposition temperature. This may be
explained by the shortened distance of X–H, leading to
weaker covalent-bond strength of X–H. Our results are useful
for predicting decomposition temperature under different
conditions e.g. doped by catalyst. We find that all the
bulk moduli are small, which indicates that MXH4 are
high-compressibility materials. Other elastic constants are

5
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also small compared with values of typical metals. Elastic
constants of the β-phase are larger than those of the α-
phase, which can be explained by the fact that bonding in
the β-phase is stronger. We also discuss elastic anisotropy of
different complex hydrides. We find that our DFT results for
NaBH4 predict larger anisotropy than experiment. The Debye
temperatures have been calculated from average elastic wave
velocities obtained from shear and bulk moduli and directly
from elastic constants Ci j .
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